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complement prior studies that highlight the 

importance of short- and medium-lived pol-

lutants ( 14– 17). 

The top 10 pollutant-generating activities 

contributing to net RF (positive RF minus 

negative RF) in year 20 are shown in the bot-

tom chart, page 526), which takes into account 

the emission of multiple pollutants from each 

source activity ( 18). The seven sources that 

appear only on the left side (purple bars) 

would be overlooked by mitigation strategies 

focusing exclusively on long-lived pollutants.

The distinctly different sources of near-

term and long-term RF lend themselves to 

the aforementioned two-pronged mitigation 

approach. This decoupling is convenient for 

policy design and implementation; whereas 

the importance of long-term climate stabi-

lization is clear, the perceived urgency of 

near-term mitigation will evolve with our 

knowledge of the climate system. Addition-

ally, optimal near-term mitigation strategies 

will refl ect decadal oscillations ( 19), seasonal 

and regional variations ( 20,  21), and evolv-

ing knowledge of aerosol-climate effects ( 22, 

 23) and methane-atmosphere interactions 

( 22)—considerations unique to the near term.

Thus, short- and medium-lived sources 

(black carbon, tropospheric ozone, and 

methane) must be regulated separately and 

dynamically. The long-term mitigation treaty 

should focus exclusively on steady reduction 

of long-lived pollutants. A separate treaty 

for short- and medium-lived sources should 

include standards that evolve based on peri-

odic recommendations of an independent 

international scientifi c panel. The framework 

of “best available control technology” (strict) 

and “lowest achievable emissions rate” 

(stricter) from the U.S. Clean Air Act ( 24) can 

be used as a model.

Such a two-pronged institutional frame-

work would reflect the evolving scientific 

understanding of near-term climate change, 

the scientifi c certainty around long-term cli-

mate change, and the opportunity to sepa-

rately adjust the pace of near-term and long-

term mitigation efforts. 
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            T
he accounting now used for assessing 

compliance with carbon limits in the 

Kyoto Protocol and in climate legisla-

tion contains a far-reaching but fi xable fl aw 

that will severely undermine greenhouse 

gas reduction goals ( 1). It does not count 

CO
2
 emitted from tailpipes and smokestacks 

when bioenergy is being used, but it also does 

not count changes in emissions from land 

use when biomass for energy is harvested or 

grown. This accounting erroneously treats all 

bioenergy as carbon neutral regardless of the 

source of the biomass, which may cause large 

differences in net emissions. For example, the 

clearing of long-established forests to burn 

wood or to grow energy crops is counted as a 
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causing large releases of carbon.
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rable to total human CO
2
 emissions today). 

Another study predicts that, based solely on 

economic considerations, bioenergy could 

displace 59% of the world’s natural forest 

cover and release an additional 9 Gt of CO
2
 

per year to achieve a 50% “cut” in green-

house gases by 2050 ( 3). The reason: When 

bioenergy from any biomass is counted as 

carbon neutral, economics favor large-scale 

land conversion for bioenergy regardless of 

the actual net emissions ( 4).

The potential of  bioenergy to reduce 

greenhouse gas emissions inherently depends 

on the source of the biomass and its net land-

use effects. Replacing fossil fuels with bio-

energy does not by itself reduce carbon 

emissions, because the CO
2
 released by tail-

pipes and smokestacks is roughly the same 

per unit of energy regardless of the source 

( 1,  5). Emissions from producing and/or 

refi ning biofuels also typically exceed those 

for petroleum ( 1,  6). Bioenergy therefore 

reduces greenhouse emissions only if the 

growth and harvesting of the biomass for 

energy captures carbon above and beyond 

what would be sequestered anyway and 

thereby offsets emissions from energy use. 

This additional carbon may result from 

land management changes that increase 

plant uptake or from the use of biomass 

that would otherwise decompose rapidly. 

Assessing such carbon gains requires the 

same accounting principles used to assign 

credits for other land-based carbon offsets.

For example, if unproductive land sup-

ports fast-growing grasses for bioenergy, 

or if forestry improvements increase tree 

growth rates, the additional carbon absorbed 

offsets emissions when burned for energy. 

Energy use of manure or crop and timber 

residues may also capture “additional” car-

bon. However, harvesting existing forests 

for electricity adds net carbon to the air. 

That remains true even if limited harvest 

rates leave the carbon stocks of regrowing 

forests unchanged, because those stocks 

would otherwise increase and contribute to 

the terrestrial carbon sink ( 1). If bioenergy 

crops displace forest or grassland, the car-

bon released from soils and vegetation, plus 

lost future sequestration, generates carbon 

debt, which counts against the carbon the 

crops absorb ( 7,  8).

The Intergovernmental Panel on Climate 

Change (IPCC) has long realized that bio-

energy’s greenhouse effects vary by source 

of biomass and land-use effects. It also rec-

ognizes that when forests or other plants are 

harvested for bioenergy, the resulting carbon 

release must be counted either as land-use 

emissions or energy emissions but not both. 

To avoid double-counting, the IPCC assigns 

the CO
2
 to the land-use accounts and exempts 

bioenergy emissions from energy accounts 

( 5). Yet it warns, because “fossil fuel substitu-

tion is already ‘rewarded’” by this exemption, 

“to avoid underreporting . . . any changes in 

biomass stocks on lands . . . resulting from 

the production of biofuels would need to be 

included in the accounts” ( 9).

This symmetrical approach works for 

the reporting under the United Nations 

Framework Convention on Climate Change 

(UNFCCC) because virtually all countries 

report emissions from both land and energy 

use. For example, if forests are cleared in 

Southeast Asia to produce palm biodiesel 

burned in Europe, Europe can exclude the 

tailpipe emissions as Asia reports the large 

net carbon release as land-use emissions.

However, exempting emissions from bio-

energy use is improper for greenhouse gas reg-

ulations if land-use emissions are not included. 

The Kyoto Protocol caps the energy emis-

sions of developed countries. But the proto-

col applies no limits to land use or any other 

emissions from developing countries, and spe-

cial crediting rules for “forest management” 

allow developed countries to cancel out their 

own land-use emissions as well ( 1,  10). Thus, 

maintaining the exemption for CO
2
 emitted by 

bioenergy use under the protocol ( 11) wrongly 

treats bioenergy from all biomass sources as 

carbon neutral, even if the source involves 

clearing forests for electricity in Europe or 

converting them to biodiesel crops in Asia .

This accounting error has carried over into 

the European Union’s cap-and-trade law and 

the climate bill passed by the U.S. House of 

Representatives ( 1,  12,  13). Both regulate 

emissions from energy but not land use and 

then erroneously exempt CO
2
 emitted from 

bioenergy use. In theory, the accounting sys-

tem would work if caps covered all land-use 

emissions and sinks. However, this approach 

is both technically and politically challenging 

as it is extremely hard to measure all land-use 

emissions or to distinguish human and natu-

ral causes of many emissions (e.g., fi res).

The straightforward solution is to fi x the 

accounting of bioenergy. That means tracing 

the actual fl ows of carbon and counting emis-

sions from tailpipes and smokestacks whether 

from fossil energy or bioenergy. Instead of an 

assumption that all biomass offsets energy 

emissions, biomass should receive credit to the 

extent that its use results in additional carbon 

from enhanced plant growth or from the use 

of residues or biowastes. Under any crediting 

system, credits must refl ect net changes in car-

bon stocks, emissions of non-CO
2
 greenhouse 

gases, and leakage emissions resulting from 

changes in land-use activities to replace crops 

or timber diverted to bioenergy ( 1).

Separately, Europe and the United States 

have established legal requirements for min-

imum use of biofuels, which assess green-

house gas  consequences based on life-cycle 

analyses that refl ect some land-use effects 

( 1,  14). Such assessments vary widely in 

comprehensiveness, but none considers bio-

fuels free from land-based emissions. Yet 

the carbon cap accounting ignores land-use 

emissions altogether, creating its own large, 

perverse incentives.

Bioenergy can provide much energy 

and help meet greenhouse caps, but correct 

accounting must provide the right incentives.
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